Tai Y , Yang J , Liu X . Image Super-Resolution via Deep Recursive Residual Network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.
1. Overview
In this paper, it proposes Deep Recursive Residual Network (DRNN)
- adopt residual learning (local + global)
- recursive to control the model parameters while increasing depth
- 2x, 6x, 14x fewer parameters than VDSR, DRCN and RED30
1.1. Related Works
1.1.1. VDSR
- high LR to accelerate the convergence speed
- residual learning + adjustable gradient clipping to sovel gradient explosion problem
1.1.2. DRCN
- chain strucuture
- recursive-supervision and skip-connection to mitigate the difficulty of training
1.2. Novelties
- both global and local residual learning
- recursive learning. Increase the depth without adding parameters
1.3. DRRN
1.3.1. Pre-Activation
1.3.2. Recursive
1.3.3. Architecture
1.3.4. Parameters
- U. the number of residual unit in a recursive block
- B. the number of recursive block
- when U=0, DRRN becomes VDSR
- depth of DRRN
1.3.5. Loss Function
2. Experiments
2.1. Dataset
- Set5
- Set14
- BSD100
- Urban100
2.2. Augmentation
- flipping
- rotation
- scale. x2, x3, x4
- training sample. 31x31 patches with stride of 21
2.3. Details
adjustable gradient clipping
γ. current learning rate
- Θ = 0.01. gradient clipping parameter
- DRRN with d=20 takes 4 days with 2 Titan X GPUs
- Metric. PSNR, SSIM, IFCs
- 0.25s per 288x288 image on a Titan X GPU
2.4. Study of B and U
2.5. Comparison
2.6. Discussion
- DRRN_NS. no sharing weights
DRRN_C. chain strucuture
LRL improves VDSR at all depth
- weight sharing DRRN (recursive strategy) better than without sharing, less prone to overfitting